Literaturverzeichnis LWF aktuell 143

  • Ayuso-Fernández, I. et al. 2019: Peroxidase evolution in white-rot fungi follows wood lignin evolution in plants. In: Proceedings of the National Academy of Sciences of the United States of America, 116. Jg., H. 36, S. 17900–17905.
  • Berardesca, E. et al. 1997: Alpha hydroxyacids modulate stratum corneum barrier function. In: British Journal of Dermatology, 137. Jg., H. 6, S. 934–938.
  • Bernatova, I. & Liskova, S. 2021: Mechanisms Modified by (-)-Epicatechin and Taxifolin Relevant for the Treatment of Hypertension and Viral Infection: Knowledge from Preclinical Studies. In: Antioxidants (Basel, Switzerland), 10. Jg., H. 3.
  • Bischof, R.H. et al. 2016: Cellulases and beyond: the first 70 years of the enzyme producer Trichoderma reesei. In: Microbial Cell Factories, 15. Jg., H. 1, S. 106.
  • Del Giudice, Angelo et al. 2019: Wood Chip Drying through the Using of a Mobile Rotary Dryer. In: Energies, 12. Jg., H. 9, S. 1590.
  • Dias, A.A. et al. 2004: Activity and elution profile of laccase during biological decolorization and dephenolization of olive mill wastewater. In: Bioresource Technology, 92. Jg., H. 1, S. 7–13.
  • Dieckmann, C. et al. 2016: Transport, Trocknung, Konservierung und Lagerung. In: Kaltschmitt, M.; Hartmann, H.; Hofbauer, H. (Hrsg.): Energie aus Biomasse. Grundlagen, Techniken und Verfahren. Springer, Berlin, S. 493–578.
  • Ellilä, S. et al. 2017: Development of a low-cost cellulase production process using Trichoderma reesei for Brazilian biorefineries. In: Biotechnology for biofuels, 10. Jg., S. 30.
  • FAO 2021: Global Forest Products Facts and Figures. http://www.fao.org/forestry/statistics/80938/en/, 17.06.2021.
  • Frodeson, S. et al. 2019: The Potential for a Pellet Plant to Become a Biorefinery. In: Processes, 7. Jg., H. 4, S. 233.
  • Gezici-Koç, Ö. et al. 2017: Bound and free water distribution in wood during water uptake and drying as measured by 1D magnetic resonance imaging. In: Cellulose, 24. Jg., H. 2, S. 535–553.
  • Goodell, B. 2020: Fungi Involved in the Biodeterioration and Bioconversion of Lignocellulose Substrates. In: Benz, J.P./Schipper, K. (Hrsg.): Genetics and Biotechnology. (The Mycota, Bd. 2). Springer, Cham; 3rd ed., S. 369–397.
  • Gößwein, S. et al. 2020: Energieholzmarkt Bayern 2018
  • Hassan, L.; Reppke, M.J. et al. 2017: Comparing the physiochemical parameters of three celluloses reveals new insights into substrate suitability for fungal enzyme production. In: Fungal Biology and Biotechnology, 4. Jg., S. 10.
  • Hatakka, A. & Hammel, K.E. 2011: Fungal biodegradation of lignocelluloses. In: Hofrichter, M. (Hrsg.): Industrial Applications. (The Mycota, Bd. 10). Springer, Berlin; 2nd ed., S. 319–340.
  • Kuptz, D. et al. 2019: Evaluation of combined screening and drying steps for the improvement of the fuel quality of forest residue wood chips—results from six case studies. In: Biomass Conversion and Biorefinery, 9. Jg., H. 1, S. 83–98.
  • Lacorte, S. 2003: Organic compounds in paper-mill process waters and effluents. In: TrAC Trends in Analytical Chemistry, 22. Jg., H. 10, S. 725–737.
  • Laurila, J. et al. 2014: Compression drying of energy wood. In: Fuel Processing Technology, 124. Jg., S. 286–289.
  • Liu, Z. & Haygreen, J.G. 1985: Drying rates of wood chips during compression drying. In: Wood and Fiber Science, 17. Jg., H. 2, S. 214–227.
  • Nagendran, S. et al. 2009: Reduced genomic potential for secreted plant cell-wall-degrading enzymes in the ectomycorrhizal fungus Amanita bisporigera, based on the secretome of Trichoderma reesei. In: Fungal Genetics and Biology : FG & B, 46. Jg., H. 5, S. 427–435.
  • Ohm, R.A. et al. 2014: Genomics of wood-degrading fungi. In: Fungal genetics and biology : FG & B, 72. Jg., S. 82–90.
  • Reppke, M.J. et al. 2022: Press water from the mechanical drying of Douglas-fir wood chips has multiple beneficial effects on lignocellulolytic fungi. Fungal Biology and Biotechnology, 9(1), p.10.
  • Riley, R. et al. 2014: Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi. In: Proceedings of the National Academy of Sciences, 111. Jg., H. 27, S. 9923–9928.
  • Saffell, B.J. et al. 2014: Seasonal carbohydrate dynamics and growth in Douglas-fir trees experiencing chronic, fungal-mediated reduction in functional leaf area. In: Tree Physiology, 34. Jg., H. 3, S. 218–228.
  • Schön, C. et al. 2019: Influence of wood chip quality on emission behaviour in small-scale wood chip boilers. In: Biomass Conversion and Biorefinery, 9. Jg., H. 1, S. 71–82.
  • Schwartz, M. et al. 2018: Molecular recognition of wood polyphenols by phase II detoxification enzymes of the white rot Trametes versicolor. In: Scientific Reports, 8. Jg., H. 1, S. 8472.
  • Sharari, M. et al. 2013: Treatment of bagasse preparation effluent by Phanerochaete chrysosporium immobilized on polyurethane foam: Enzyme production versus pollution removal. In: Industrial Crops and Products, 46. Jg., S. 226–233.
  • Takano, M. & Hoshino, K. 2018: Bioethanol production from rice straw by simultaneous saccharification and fermentation with statistical optimized cellulase cocktail and fermenting fungus. In: Bioresources and Bioprocessing, 5. Jg., H. 1, S. 4767.
  • Valette, N. et al. 2017: Antifungal activities of wood extractives. In: Fungal Biology Reviews, 31. Jg., H. 3, S. 113–123.
  • Warlo, H. et al. 2023: Extractives in Douglas firs (Pseudotsuga menziesii (Mirb.) Franco) from three sites in south‑west Germany and potential opportunities for valorization. European Journal of Wood and Wood Products 81, 1093-1108.
  • Ximenes, E. et al. 2010: Inhibition of cellulases by phenols. In: Enzyme and Microbial Technology, 46. Jg., 3-4, S. 170–176.
  • Yoshida, T. et al. 2010: Dewatering of high-moisture wood chips by roller compression method. In: Biomass and Bioenergy, 34. Jg., H. 7, S. 1053–1058.
  • Zhang, R. & Barzee, T. 2018: Clarifying Water and Wastewater with Fungal Treatment/Bioflocculation. International Patent.
  • Zhao, Youke et al. 2015: Studies on pre-treatment by compression for wood drying I: effects of compression ratio, compression direction and compression speed on the reduction of moisture content in wood. In: Journal of Wood Science, 61. Jg., H. 2, S. 113–119.