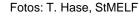
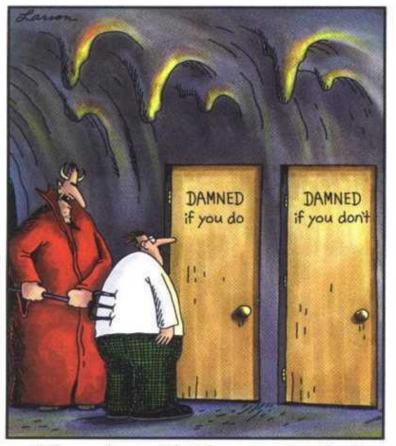
Hintergründe und Aktuelles zur Genetik der Roteiche

Bayerisches Amt für Waldgenetik



Sonderbehörde der Bayerischen Forstverwaltung


Aufgaben

- Vollzug des Forstvermehrungsgutrechts in Bayern
- Erhaltung forstlicher Genressourcen in Bayern
- Angewandte forstgenetische Laborforschung
- Herkunftsversuche und Nachkommenschaftsprüfungen
- Samenplantagen
- Aus- und Fortbildung im Fachbereich

Warum die Baumarten- und Herkunftsfrage?

- Waldbäume haben eine sehr lange Lebenszeit
- Der Wald kann vor dem Klimawandel nicht davonlaufen
- Das Klima ändert sich drastisch und für den Wald zu schnell
- An das Klima nicht angepasste Wälder sind gefährdet
- Anpassung und Produktivität sind maßgeblich abhängig von der Wahl der geeigneten Herkünfte

"C'mon, c'mon-it's either one or the other."

Klimawandel

Staatliche Millionenhilfe soll Forste gegen Klimawandel wappnen

Herkunftsempfehlungen

- Gesundheit, Stabilität und Leistungsvermögen unserer Wälder hängen weitgehend von der richtigen Wahl standortsgemäßer Baumarten und Herkünfte ab. Herkunftsgerechtes Saat- und Pflanzgut steht am Beginn waldbaulichen Handelns.
- 2. Versorgung der Waldbesitzer mit **geeigneten Herkünften** forstlichen Vermehrungsgutes **für künstliche Verjüngungsmaßnahmen eine wesentliche Voraussetzung** für einen **zielgerichteten Waldbau**.

Baumarten nach FoVG

Baumarten, die dem FoVG unterliegen und für die Forstwirtschaft im Inland hohe Bedeutung haben

- Weißtanne
- Große Küstentanne
- Spitzahorn
- Bergahorn
- o Schwarzerle
- Grauerle
- Sandbirke
- Moorbirke
- Hainbuche
- Esskastanie
- Rotbuche
- Esche
- Europäische Lärche
- Hybrid-Lärche

- Japanische Lärche
- Fichte (Gemeine Fichte)
- Sitkafichte
- Schwarzkiefer
- Waldkiefer (Gemeine Kiefer)
- Pappeln
- Vogelkirsche
- Douglasie
- Traubeneiche
- Stieleiche
- Roteiche
- Robinie
- Winterlinde
- Sommerlinde

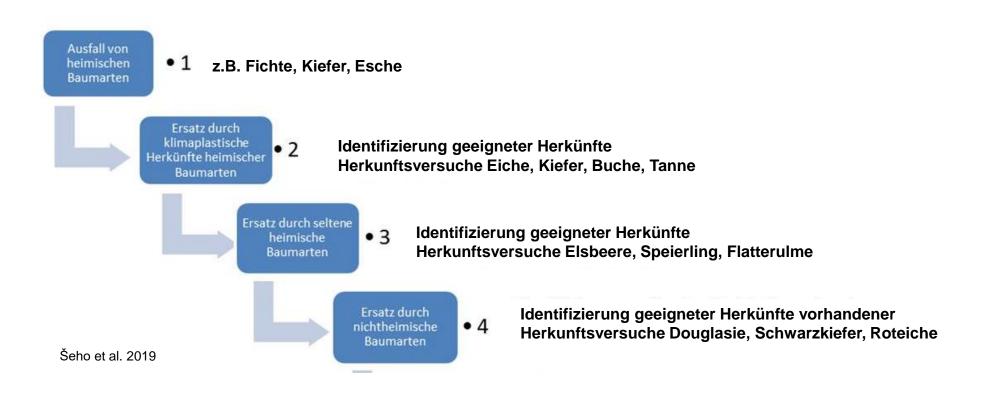
Saatgutprüfung nach FoVG

Nach § 14 FoVG muss an jeder Saatgutpartie, die in Umlauf gebracht wird, eine Prüfung zur Feststellung der äußeren Beschaffenheit durchgeführt werden.


Am AWG wurden insgesamt **55 Roteichenpartien** der **Reifejahre 2000 bis 2024** geprüft. Es ergaben sich folgende Durchschnitts-Werte:

Wassergehalt: 36,4 %

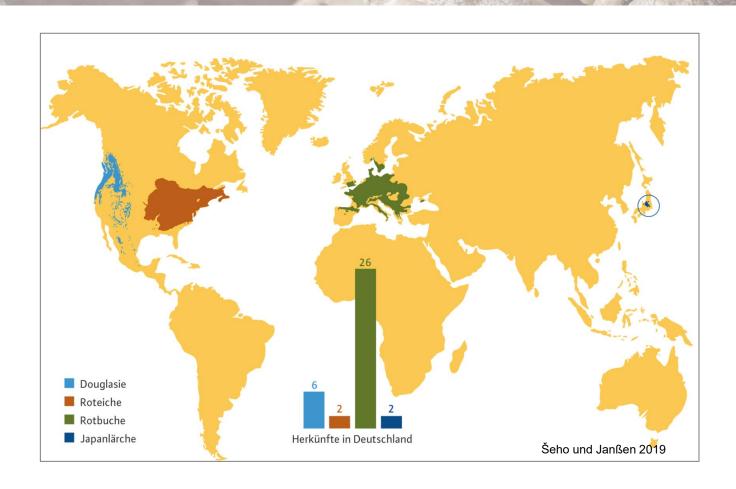
Keimfähigkeit: 72,6 %


Tausendkorngewicht: 5264 g

Anzahl lebender Keime pro Kilogramm Saatgut: 143,6 Stk.

FoVG-Baumarten mit Herkunftsgebieten in Deutschland

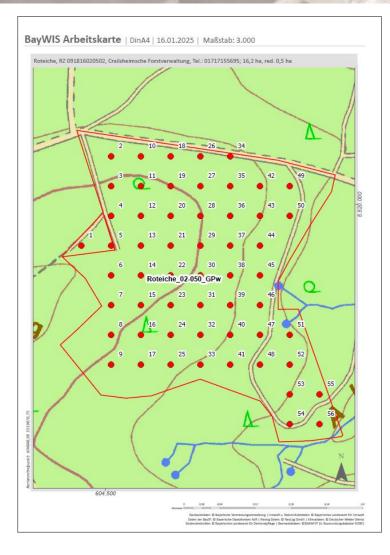
Roteiche (Quercus rubra)


- Ihr natürliches Areal liegt im Osten Nordamerikas
- Im Süden wächst sie bis 1700 m ü. NN
- Jahresniederschläge liegen zwischen 700 und 2000 mm
- Sie bevorzugt frische Lehm- oder Sandböden
- Sie kann Reinbestände ausbilden

Herkunftseinteilung der Roteiche

Nach über 100 Jahren Anbau der Roteiche in Bayern ist die Herkunft des Vermehrungsguts für die Begründung der bayerischen Bestände nicht bekannt!

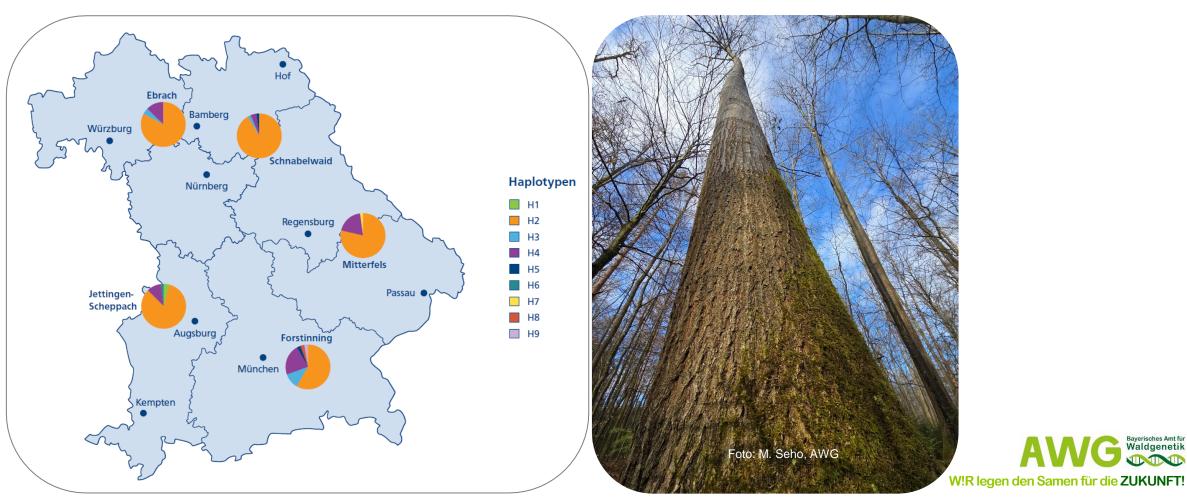
Roteiche (Quercus rubra)



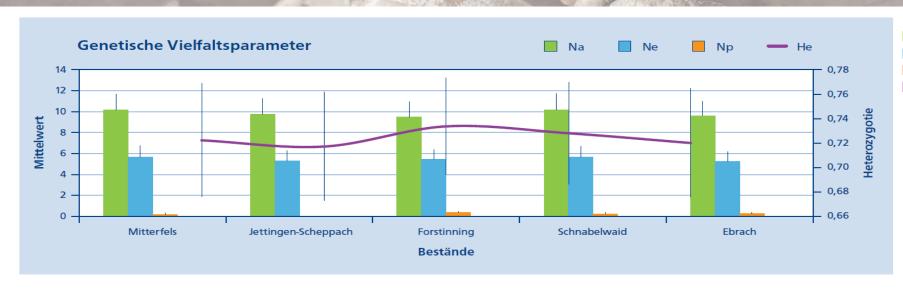
Aufbau einer Nachkommenschaftsprüfung mit Ziel Samenplantage

- Plusbaumauswahl
- Beerntung der Plusbäume
- Aussaat und Anzucht
- Versuchsflächenanlage
- Selektionsschritte:
 - 1. Entnahme schlechter NK
 - 2. Entnahme schlechter Einzelindividuen
- Überführung in Samenplantagen

Genetik der Roteiche in Bayern



- Repräsentative Beprobung von fünf zugelassenen Saatguterntebeständen mittels Knospenproben
- DNA-Analyse mittels hochvariabler Mikrosatelliten-Marker aus dem Zellkern und den Chloroplasten
- Für die Analysen wurden 15 Marker aus dem Zellkern und fünf Marker für die Chloroplasten verwendet
- Die statistische Auswertung erfolgte mit den Softwareprogrammen Genalex (Peakall & Smouse 2012) und STRUCTURE, Version 2.3.4 (FALUSH et al. 2003)



Genetik der Roteiche in Bayern

Ergebnisse Chloroplastenmarker

Genetische Vielfaltsparameter anhand der Kern-Marker

Na, Mittlere Anzahl der Allele Ne, Mittlere effektive Anzahl der Allele

Np, Mittlere Anzahl privater Allele

He, erwartete Heterozygotie

Genetische Unterschiede zwischen den 5 Beständen der Roteiche in Bayern.

Jede vertikale Linie stellt einen Baum dar.

Genetischer Abstand

Genetischer Abstand nach Nei (1972) anhand der Kern-Marker

Mitterfels	Jettingen-Scheppach	Forstinning	Schnabelwaid	
0,034				Jettingen-Scheppach
0,026	0,042			Forstinning
0,029	0,014	0,030		Schnabelwaid
0,024	0,025	0,031	0,020	Ebrach

Fotos: J. Eckel, und M. Seho, AWG

Genetik

- Die bayerischen Bestände sind vermutlich aus gemischtem Material mehrerer Ursprungsbestände oder in Europa etablierter Bestände entstanden
- Die genetische Vielfalt der bayerischen Bestände ist vergleichbar mit anderen Beständen in Deutschland und stellt nur einen Teil der Vielfalt aus dem ursprünglichen Verbreitungsgebiet dar
- Durch Einfuhr von Herkünften aus trockeneren Regionen in Nordamerika kann die Vielfalt gesteigert werden
- In weiteren Untersuchungen mit mehreren Saatguterntebeständen aus Deutschland und Österreich soll eine genauere Zuordnung der Bestände zu den Ausgangsbeständen im natürlichen Verbreitungsgebiet vorgenommen werden

Herkunftsempfehlung Roteiche

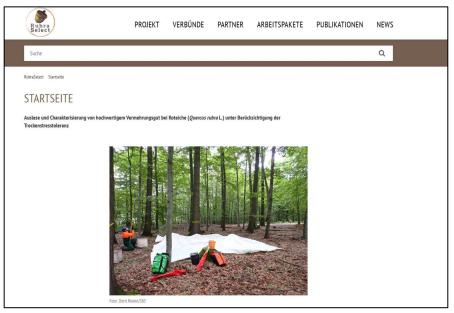
816 02 Übriges Bundesgebiet

Bisher bewährte Herkün	fte	
EB des HKG 816 02		ausgewählt
EB des HKG 816 01		ausgewählt
Klimaplastische Herkünf	e	
EB des HKG QRU902	Frankreich	ausgewählt
EB des HKG QRU901	Frankreich	ausgewählt

Herkünfte für Praxisa			
Bulgarien	EB	C01QRU05500132	ausgewählt
	EB	C02QRU10300632	ausgewählt
	EB	C02QRU10300832	ausgewählt
Österreich	EB des HKG 9.2	R.Ei1 (9.2/tm)	ausgewählt
	EB des HKG 8.2	R.Ei2 (8.2/ko)	ausgewählt
	EB des HKG 8.1	R.Ei3 (8.1/ko)	ausgewählt
	EB des HKG 8.1	R.Ei9 (8.1/ko)	ausgewählt

- 23 ausgewählte und zugelassene Saatguterntebestände in Bayern
- 463 Saatguterntebestände der Kategorie "Ausgewählt" in Deutschland

Projekt Rubra Select


Flächenanlage mit den Nachkommenschaften der Plusbäume, die zukünftig in Samenplantagen überführt werden

- Festlegung des Versuchsdesigns, das eine gleichzeitige Auswertung der Ursprungsbestände (Herkünfte) sowie der Familien (Einzelstammabsaaten der Plusbäume) erlaubt.
- Akquirierung der Versuchsflächen, die eine ausreichende Größe aufweisen.
- Anlage der Versuchsflächen in Baden-Württemberg, Niedersachsen, Brandenburg, Sachsen und Bayern mit Baumschulpflanzen.

https://www.rubraselect.de/startseite

Fazit

Im Klimawandel brauchen wir angepasste und anpassungsfähige Bestände

- Die Bewertung von Alternativbaumarten sollte anhand von gut dokumentierten Herkunfts- und Praxisanbauversuchen erfolgen
- Bewertung Angepasstheit und Anpassungsfähigkeit von Erntebeständen im natürlichen Verbreitungsgebiet und in Deutschland
- Beschreibung und Beerntung von ausgewählten Erntebeständen im natürlichen Verbreitungsgebiet (Anpassung berücksichtigen)
- Anlage von Nachkommenschaftsprüfungen, Samenplantagen und Saatgutzukunftsbeständen (mit heimischen und nichtheimischen Herkünften)
- o Dokumentation, Saatgutversorgung und Herkunftskontrolle
- Erweiterung der Anbaumöglichkeiten und Streuung des Risikos für Waldbesitzende über aktualisierte Herkunfts- und Verwendungsempfehlungen

Erhalten und Nutzen forstlicher Genressourcen

Projekte

sensFORnative

Klimasensitivität forstlicher Genressourcen heimischer Baumarten

Dauerprojekt, Beginn 01.01.2025

sensFORoak

Klimasensitivität vonForstgenressourcen heimischer Eichenarten in Deutschland

Laufzeit 01.01.2024 - 31.12.2026

GenSorb

Mehlbeere – Verbesserung der Erntebasis und Erarbeitung von Herkunftsempfehlungen

Laufzeit 01.12.2024 - 30.11.2025

klifW025

Kalabrische Weißtanne in Bayern – Aufbau einer Samenplantage

Laufzeit 01.07.2023 - 31.12.2024

BePiGen

Genetik der Moorbirke und Moorspirke in Bayern

Laufzeit 01.07.2023 - 30.06.2024

Wildbirne

Erhalt und Vermehrung der Wildbirne – Zwischen Herausforderung und Chance

Laufzeit 01.01.2023 - 30.04.2024

